
Forced convection in thermally developing turbulent ¯ow
of drag-reducing ¯uids within circular tubes

E.N. MaceÃ doa, C.E. Maneschya, J.N.N. Quaresmab,*
aMechanical Engineering Department Ð CT, Universidade Federal do ParaÂ, Campus UniversitaÂrio do GuamaÂ, Rua Augusto CorreÃa,

01 66075-900 BeleÂm, PA, Brazil
bChemical Engineering Department Ð CT, Universidade Federal do ParaÂ, Campus UniversitaÂrio do GuamaÂ, Rua Augusto CorreÃa,

01 66075-900 BeleÂm, PA, Brazil

Received 16 July 1999; received in revised form 17 December 1999

Abstract

The Integral Transform Technique is used to solve the turbulent forced convection problem for drag-reducing

¯uids in the thermal developing and fully developed regions within circular tubes. Turbulent e�ects are taken into
account through an algebraic model corresponding to the minimum-drag asymptotic case for viscoelastic ¯uids. The
well-established Sign-Count Method and the Generalized Integral Transform Technique (GITT) are both employed
in order to compute the eigenvalues and the respective eigenfunctions of the associated Sturm±Liouville problem.

The Nusselt numbers calculated with the present approach are then compared with those obtained from
experimental works available in the literature. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The drag reduction phenomenon has been known
for about ®ve decades. In his pioneering study in this

area, Toms [1] observed that for turbulent ¯ow some
¯uids exhibited a smaller friction coe�cient and
smaller heat transfer rates than Newtonian ¯uids.

However, in a recent paper, Kostic [2] pointed out that
such phenomenon is not quite well understood,
because the classical isotropic ¯uid mechanics is not
applicable to very complex ¯uids and because the tur-

bulence phenomenon is also not well understood, even
for Newtonian ¯uids; so that many questions about
these ¯uids remain unanswered.

Nowadays, there are a great number of practical en-

gineering problems that make use of these character-

istics, among them are included the transportation of
clay suspensions through extensive pipelines. In this
application, polymeric solutions presenting this be-

havior are added to these suspensions, in order to
reduce the pressure drop and, consequently, the cost of
pumping. Another application involving these ¯uids
concerns to the design of heat exchange devices, where

a lower heat transfer rate is obtained when compared
with the newtonian situation, and the performance of
such equipment is improved. The present work is not

concerned with technological and theoretical aspects of
the drag reduction phenomenon, which are covered in
details in the paper by Kostic [2] and in several other

excellent references available in the literature [3±8].
Turbulent forced convection problems within cir-

cular tubes have been solved by di�erent methods,

mostly purely numerical techniques. In this paper,
the integral transform technique is used to solve the
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heat transfer problem in both thermal developing

and fully developed regions within a circular tube,

involving drag-reducing ¯uids. Such precision-con-

trolled technique has been used in the solution of

di�erent di�usion and convection di�usion problems

[9,10]. In the application of this technique the re-

lated eigenvalue problem is solved through both the

well-established Sign-Count Method [11] and the

Generalized Integral Transform Technique (GITT)

[10,12], permitting the determination of the eigen-

values and their respective eigenfunctions with accu-

rate precision, as well as other related eigen-

quantities.

In this context, the Nusselt numbers are computed

and compared with those obtained from empirical cor-

relations and other works available in the literature

[7,13,14]. Such results, as computed by the present

approach, have their precision controlled by the num-

ber of eigenquantities utilized in the solution, as
described next. The turbulent e�ects are taken into
account by employing the turbulent velocity pro®le by

Virk et al. [6], corresponding to the minimum-drag
asymptotic case, and the algebraic model for the total
eddy di�usivity of heat suggested by Cho and Hartnett
[7].

2. Analysis

Steady-state heat transfer problem of an incompres-

sible drag-reducing ¯uid ¯owing in both the thermal
entry and fully-developed regions of a circular tube is
analyzed. The ¯ow is considered to be hydrodynami-

cally developed; the wall tube is subjected either to a
prescribed uniform heat ¯ux or a prescribed constant
temperature; and the ¯uid enters with a uniform tem-

Nomenclature

C velocity ratio
Dh � 2rw hydraulic diameter
Eh�R� total eddy di�usivity of heat

f Fanning friction factor
�fi transformed inlet condition de®ned by

Eq. (16b)

h(z ) local heat transfer coe�cient
jh heat transfer j factor
k thermal conductivity

m constant related to boundary con-
ditions

Ni normalization integral de®ned by Eq.
(15)

Nu(Z ), Nu1 local and asymptotic Nusselt num-
bers, respectively

p pressure ®eld

Pra apparent Prandtl number
qw wall heat ¯ux
rw tube radius

r, R radial coordinate, dimensional and
dimensionless, respectively

R+ dimensionless variable de®ned by Eq.

(4f)
Rea apparent Reynolds number
T(r,z ) dimensional temperature distribution
T i inlet temperature

Tw prescribed wall temperature
u(r ), U(R ) velocity distribution, dimensional and

dimensionless, respectively

um, umax average ¯ow and maximum velocities,
respectively

u+ dimensionless velocity de®ned by Eqs.

(4c) and (4d)
W(R ) velocity pro®le de®ned by Eq. (3e)
y+ dimensionless radial coordinate re-

lated to Eq. (4d)
z, Z axial coordinate, dimensional and

dimensionless, respectively

Greek symbols
a ¯uid thermal di�usivity

eh eddy di�usivity of heat
Z dummy variable related to integrals in

Eqs. (11d) and (11e)
mi eigenvalues of problem (13)

na apparent kinematic viscosity
x dummy variable related to integral in

Eq. (11d)

Ci�R� eigenfunctions of problem (13)
r density
tw wall shear stress

y�R, Z � dimensionless temperature distri-
bution

yav�Z � dimensionless average temperature

yh�R, Z � solution of homogeneous problem
(12)

�yhi�Z � integral transform de®ned by Eq.
(14a)

yp�R� solution of particular problem (11)

Subscripts and superscripts

av related to average quantities

- integral transform
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perature, Ti: Axial di�usion, wall-conjugation and the
viscous dissipation term in the energy equation are

neglected, and the physical properties are assumed to
be constant.
The mathematical formulation for this general

forced convection heat transfer problem in dimension-
less form is written as:

W�R�@y�R, Z�
@Z

� @

@R

�
REh�R�@y�R, Z�

@R

�
,

in 0 < R < 1, Z > 0

�1a�

subjected to the inlet and boundary conditions

y�R, 0� � 0, 0RRR1 �1b�

@y�R, Z�
@R

����
R�0
� 0, Z > 0 �1c�

�1ÿm�y�1, Z� �m
@y�1, Z�
@R

� 1, Z > 0 �1d�

where the constant ``m'' is related to the boundary

conditions in the following form:

m �
�
0 for prescribed wall temperature

1 for prescribed wall heat flux
�2�

The following dimensionless groups were employed
in Eqs. (1a)±(1d) above

R � r

rw

�3a�

Z � 4z=Dh

C ReaPra

�3b�

U�R� � u�r�
umax

�3c�

C � umax

um
�3d�

W�R� � RU�R� �3e�

Rea � umDh

na

�3f�

Pra � na

a
�3g�

Eh�R� � 1� eh

a
� 1� Pra

eh

na

�3h�

and

y�R, Z� � T�r, z� ÿ Ti

Tw ÿ Ti
,

for prescribed wall temperature �m � 0�
�3i�

y�R, Z� � T�r, z� ÿ Ti

�qwrw=k� ,

for prescribed wall heat flux �m � 1�
�3j�

where Dh � 2rw is the hydraulic diameter and Rea and

Pra are the apparent Reynolds and Prandtl numbers.
The turbulent dimensionless velocity pro®le, U(R ),

and the algebraic model for the total eddy di�usivity

of heat, Eh�R�, corresponding to the minimum-drag
asymptotic case, are taken, respectively, from the
works by Virk et al. [6], and Cho and Hartnett [7]:

U�R� � 2

C

����
f

8

r
u� �4a�

Eh�R� � 1� Pra
eh

na

�4b�

u� � 11:7 ln
ÿ�1ÿ R�R�

�
ÿ 17:0, RR1ÿ 11:6

R�
�4c�

u� � y� � �1ÿ R�R�, Rr1ÿ 11:6

R�
�4d�

eh

na

� 2:5� 10ÿ6
ÿ
y�
�3� 2:5� 10ÿ6

ÿ�1ÿ R�R�
�3 �4e�

with

R� � Rea

����
f

8

r
�4f�

The Fanning friction factor is de®ned as

f �
�
ÿ dp

dz

�
Dh

2ru 2
m

� tw

1

2
ru 2

m

�5�

which is computed by satisfying the equation for the
average ¯ow velocity, in the following form

4

����
f

8

r �1
0

Ru� dR � 1 �6�

The relation of velocities C � umax=um is obtained
from Eqs. (4c) and (4d) resulting
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C � 2

����
f

8

r
�11:7 ln�R�� ÿ 17:0� �7�

Therefore, for a given apparent Reynolds number

and friction factor f, C is readily determined from this
expression.
Table 1 shows the comparison between the Fanning

friction factor computed from the present analysis and
the one found from the empirical correlation by Cho
and Hartnett [7], with an excellent agreement being

observed. The relation of velocity, C, is also shown in
this table.
The problem de®ned by Eqs. (1) can be readily

solved by the classical integral transform technique

[9,10]. However, in order to obtain a convergence
acceleration of the ®nal solution, the so-called split-
ting-up procedure [9,15] is applied to this problem.

Then, it is proposed as a general separation into sim-
pler problems in the form:

y�R, Z� � myav�Z� � yp�R� � yh�R, Z� �8�

where yav�Z � is the average temperature, de®ned as:

yav�Z� �

�1
0

W�R�y�R, Z� dR�1
0

W�R� dR
�9�

and, for the case of a prescribed wall heat ¯ux, when
all boundary conditions are of the second kind, the

average temperature is given a priori in the form:

yav�Z� � Z�1
0

W�R� dR
� 2CZ �10�

In Eq. (8), yp�R� represents the separated solution
due to the nonhomogeneous boundary condition, Eq.

(1d), and yh�R, Z � is the homogeneous version of pro-
blem (1), and are obtained from the following formu-
lations:

d

dR

�
REh�R�dyp�R�

dR

�
ÿ 2mCW�R� � 0,

in 0 < R < 1

�11a�

with boundary conditions

dyp�R�
dR

����
R�0
� 0 �11b�

�1ÿm�yp�1� �m
dyp�R�

dR

����
R�1
� 1 �11c�

which is readily integrated to furnish

yp�R� � �1ÿm� �m

8><>:yp�1� � 2C

�R
1

� �Z
0

W�x� dx
�

ZEh�Z� dZ

9>=>;
�11d�

yp�1� � 4C 2

�1
0

" �R
0

W�Z� dZ
# 2

REh�R� dR �11e�

and, the general homogeneous problem is given by:

W�R�@yh�R, Z�
@Z

� @

@R

�
REh�R�@yh�R, Z�

@R

�
,

in 0 < R < 1, Z > 0

�12a�

yh�R, 0� � ÿyp�R�, 0RRR1 �12b�

@yh�R, Z�
@R

����
R�0
� 0, Z > 0 �12c�

�1ÿm�yh�1, Z� �m
@yh�1, Z�

yR
� 0, Z > 0 �12d�

The homogeneous problem given by Eqs. (12) can

be solved by the classical integral transform technique
[9,10]. Then, following the procedures of this tech-
nique, the general appropriate eigenvalue problem
needed for its solution is taken as

d

dR

�
REh�R�dCi�R�

dR

�
� m 2

i W�R�Ci�R� � 0,

in 0 < R < 1

�13a�

dCi�R�
dR

����
R�0
� 0 �13b�

Table 1

Fanning friction factor computed from the present analysis

Rea f C � umax=um

6000 0.003679353a 0.003072680b 1.70837642

10,000 0.002705998 0.002404529 1.61880314

60,000 0.001111937 0.001017460 1.40931996

100,000 0.0009016435 0.0007962143 1.36993435

a Present analysis.
b Empirical correlation proposed by Cho and Hartnett [7].
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�1ÿm�Ci�1� �m
dCi�1�

dR
� 0 �13c�

where Ci�R� and mi are, respectively, the eigenfunctions
and eigenvalues. The problem de®ned by Eqs. (13) is

solved by the so-called Sign-Count Method [11] and
Generalized Integral Transform Technique [10,12],
which o�er safe and automatic computations of as

many eigenvalues and eigenfunctions as it is desired,
with controlled accuracy. The eigenvalue problem
above allows for the development of the following inte-
gral transform pair:

�yhi�Z� �
�1
0

W�R�Ci�R�yh�R, Z� dR, transform �14a�

yh�R, Z� �
X1
i�1

1

Ni
Ci�R��yhi�Z�, inversion �14b�

where Ni is the normalization integral given by:

Ni �
�1
0

W�R�C 2
i
�R� dR �15�

Taking the integral transform of the system given by
Eqs. (12), equations above are operated with� 1
0 Ci�R� dR, and the following ordinary di�erential

equation for the transformed potential, �yhi�Z �, is
obtained

d�yhi�Z�
dZ

� m 2
i

�yhi�Z� � 0 �16a�

with the transformed inlet condition given by

�yhi�0� � �fi � ÿ
�1
0

W�R�Ci�R�yp�R� dR �16b�

The solution for the transformed potential given by
Eqs. (16) is readily obtained in the form

�yhi�Z� � �fi exp
ÿÿ m 2

i Z
� �17�

Therefore, introducing Eq. (17) into the inversion
formula (14b), the solution for yh�R, Z � is determined

as follows

yh�R, Z� �
X1
i�1

�fi
Ni

Ci�R�exp
ÿÿ m 2

i Z
� �18�

Thus, Eq. (18) in conjunction with Eqs. (11d) and
(11e) for yp�R� complete the solution for the potential
y�R, Z � de®ned in Eq. (8). This solution is written as:

y�R, Z� � myav�Z� � �1ÿm�

�m

8><>:yp�1� � 2C

�R
1

� �Z
0

W�x� dx
�

ZEh�Z� dZ

9>=>;
�
X1
i�1

�fi
Ni

Ci�R�exp
ÿÿ m 2

i Z
�

�19�

For the case of a prescribed wall heat ¯ux �m � 1�,
the average temperature is given by Eq. (10). For the
case of prescribed wall temperature �m � 0�, when it is

not determined a priori, it may be readily obtained by
substituting the solution for y�R, Z � (Eq. (19)) into
Eq. (9) to yield:

yav�Z� � 1� 2C
X1
i�1

�f 2
i

Ni
exp

ÿÿ m 2
i Z
� �20�

and the dimensionless wall heat ¯ux is also determined

from Eq. (19) as follows:

@y�R, Z�
@R

����
R�1
�
X1
i�1

�fi
Ni

dCi�R�
dR

����
R�1

exp
ÿÿ m 2

i Z
�

�
X1
i�1

�f 2
i m

2
i

Ni

ÿÿ m 2
i Z
�
, for m � 0 �21�

The local Nusselt number for both situations is

de®ned as:

Nu�Z� � h�z�Dh

k
�

2
@y�R, Z�
@R

����
R�1

y�1, Z� ÿ yav�Z� �22�

after substituting Eq. (21) for @ y�R,Z �
@R jR�1, and Eq. (20),

for the case of a prescribed wall temperature, into Eq.
(22) above, results:

Nu�Z� �

X1
i�1

�f 2
i m

2
i

Ni
exp

ÿÿ m 2
i Z
�

C
X1
i�1

�f 2
2

Ni
exp

ÿÿ m 2
i Z
� �23�

The asymptotic Nusselt number, Nu1, is obtained

from Eq. (23) by considering only the ®rst term in the
summation, to yield:

Nu1 � m 2
1

C
�24�

For the case of a prescribed wall heat ¯ux the wall
temperature y�1, Z � is obained from Eq. (19) as:
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y�1, Z� � yav�Z� � yp�1� �
X1
i�1

�fi
Ni

Ci�1�exp
ÿÿ m 2

i Z
�
�25�

with,

�fi � ÿ
Ci�1�
m 2
i

�26�

The local Nusselt number for this case is now com-

pleted by subtituting Eqs. (25) and (26) into Eq. (22)
resulting

Table 2

First 10 eigenvalues and �f 2
i =Ni for various Reynolds and Prandtl numbers for the case of prescribed wall temperature

m = 1 (prescribed wall temperature)

Rea Pra 7.3 10.3

i �f 2
i =Ni mi

a mi
b �f 2

i =Ni mi
a mi

b

6� 103 1 2.6949Eÿ1 3.4678E+0 3.4678E+0 2.7239Eÿ1 3.6059E+0 3.6059E+0

2 1.3490Eÿ2 1.2981E+1 1.2981E+1 1.1791Eÿ2 1.4259E+1 1.4259E+1

3 4.0000Eÿ3 2.1626E+1 2.1626E+1 3.4979Eÿ3 2.3790E+1 2.3790E+1

4 1.7800Eÿ3 3.0218E+1 3.0218E+1 1.5607Eÿ3 3.3265E+1 3.3265E+1

5 9.8000Eÿ4 3.8776E+1 3.8776E+1 8.6120Eÿ4 4.2700E+1 4.2699E+1

6 6.1000Eÿ4 4.7310E+1 4.7310E+1 5.4030Eÿ4 5.2103E+1 5.2103E+1

7 4.1000Eÿ4 5.5823E+1 5.5823E+1 3.6880Eÿ4 6.1480E+1 6.1480E+1

8 3.0000Eÿ4 6.4319E+1 6.4319E+1 2.6660Eÿ4 7.0836E+1 7.0836E+1

9 2.2000Eÿ4 7.2800E+1 7.2800E+1 2.0080Eÿ4 8.0177E+1 8.0176E+1

10 1.7000Eÿ4 8.1271E+1 8.1271E+1 1.5570Eÿ4 8.9507E+1 8.9506E+1

1� 104 1 2.9122Eÿ1 3.8783E+0 3.8783E+0 2.9368Eÿ1 4.0558E+0 4.0558E+0

2 1.0220Eÿ2 1.6953E+1 1.6953E+1 8.7745Eÿ3 1.8819E+1 1.8819E+1

3 3.0800Eÿ3 2.8284E+1 2.8284E+1 2.6559Eÿ3 3.1408E+1 3.1408E+1

4 1.3700Eÿ3 3.9568E+1 3.9568E+1 1.1838Eÿ3 4.3957E+1 4.3957E+1

5 7.5000Eÿ4 5.0815E+1 5.0815E+1 6.5010Eÿ4 5.6464E+1 5.6464E+1

6 4.6000Eÿ4 6.2033E+1 6.2033E+1 4.0560Eÿ4 6.8937E+1 6.8937E+1

7 3.1000Eÿ4 7.3229E+1 7.3229E+1 2.7560Eÿ4 8.1380E+1 8.1380E+1

8 2.2000Eÿ4 8.4403E+1 8.4403E+1 1.9880Eÿ4 9.3797E+1 9.3797E+1

9 1.7000Eÿ4 9.5561E+1 9.5561E+1 1.4960Eÿ4 1.0619E+2 1.0619E+2

10 1.3000Eÿ4 1.0670E+2 1.0670E+2 1.1630Eÿ4 1.1857E+2 1.1857E+2

6� 104 1 3.5006Eÿ1 6.6743E+0 6.6743E+0 3.5084Eÿ1 7.0492E+0 7.0492E+0

2 2.5810Eÿ3 5.7043E+1 5.7043E+1 2.1424Eÿ3 6.4651E+1 6.4652E+1

3 8.7900Eÿ4 9.3707E+1 9.3707E+1 7.3610Eÿ4 1.0598E+2 1.0599E+2

4 4.0100Eÿ4 1.3078E+2 1.3078E+2 3.3660Eÿ4 1.4785E+2 1.4785E+2

5 2.2000Eÿ4 1.6794E+2 1.6794E+2 1.8530Eÿ4 1.8984E+2 1.8985E+2

6 1.3600Eÿ4 2.0511E+2 2.0511E+2 1.1490Eÿ4 2.3185E+2 2.3186E+2

7 9.1000Eÿ5 2.4227E+2 2.4227E+2 7.7400Eÿ5 2.7384E+2 2.7385E+2

8 6.5000Eÿ5 2.7940E+2 2.7940E+2 5.5400Eÿ5 3.1580E+2 3.1581E+2

9 4.8000Eÿ5 3.1650E+2 3.1650E+2 4.1500Eÿ5 3.5772E+2 3.5773E+2

10 3.7000Eÿ5 3.5357E+2 3.5357E+2 3.2200Eÿ5 3.9960E+2 3.9961E+2

1� 105 1 3.6195Eÿ1 8.0161E+0 8.0161E+0 3.6246Eÿ1 8.4753E+0 8.4753E+0

2 1.6250Eÿ3 8.5243E+1 8.5243E+1 1.3434Eÿ3 9.6923E+1 9.6925E+1

3 5.7400Eÿ4 1.3893E+2 1.3893E+2 4.7890Eÿ4 1.5759E+2 1.5759E+2

4 2.6500Eÿ4 1.9345E+2 1.9345E+2 2.2160Eÿ4 2.1929E+2 2.1929E+2

5 1.4600Eÿ4 2.4822E+2 2.4822E+2 1.2250Eÿ4 2.8133E+2 2.8133E+2

6 9.0000Eÿ5 3.0307E+2 3.0307E+2 7.6100Eÿ5 3.4347E+2 3.4348E+2

7 6.1000Eÿ5 3.5794E+2 3.5794E+2 5.1200Eÿ5 4.0563E+2 4.0564E+2

8 4.3000Eÿ5 4.1279E+2 4.1279E+2 3.6600Eÿ5 4.6777E+2 4.6778E+2

9 3.2000Eÿ5 4.6762E+2 4.6762E+2 2.7400Eÿ5 5.2988E+2 5.2989E+2

10 2.5000Eÿ5 5.2241E+2 5.2241E+2 2.1200Eÿ5 5.9194E+2 5.9196E+2

a Sign-Count Method.
b GITT approach.
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Nu�Z� � 2

yp�1� ÿ
X1
i�1

C 2
i
�1�

Nim 2
i

exp
ÿÿ m 2

i Z
� �27�

where, yp�1� is given by Eqs. (11d) and (11e). The

asymptotic Nusselt number, Nu1 is determined by
making Z41 in Eq. (27), so that

Nu1 � 2

yp�1� �28�

3. Results and discussion

To complete the solution it is necessary to evaluate
the eigenvalues, mi, the eigenfunctions, Ci�R� and nor-

Table 3

First 10 eigenvalues and C 2
i �1�=Ni for various Reynolds and Prandtl numbers for the case of prescribed wall heat ¯ux

m = 1 (prescribed wall heat ¯ux)

Rea Pra 7.3 10.3

i C 2
i �1�=Ni mi

a mi
b C 2

i �1�=Ni mi
a mi

b

6� 103 1 1.1936E+1 9.5808E+0 9.5808E+0 1.3520E+1 1.0575E+1 1.0575E+1

2 1.2391E+1 1.8579E+1 1.8579E+1 1.4087E+1 2.0463E+1 2.0463E+1

3 1.3668E+1 2.7283E+1 2.7283E+1 1.5592E+1 3.0044E+1 3.0044E+1

4 1.4927E+1 3.5878E+1 3.5878E+1 1.7052E+1 3.9506E+1 3.9506E+1

5 1.6066E+1 4.4415E+1 4.4415E+1 1.8337E+1 4.8907E+1 4.8907E+1

6 1.7050E+1 5.2921E+1 5.2921E+1 1.9411E+1 5.8275E+1 5.8275E+1

7 1.7875E+1 6.1410E+1 6.1410E+1 2.0290E+1 6.7627E+1 6.7627E+1

8 1.8561E+1 6.9890E+1 6.9890E+1 2.1019E+1 7.6972E+1 7.6972E+1

9 1.9145E+1 7.8366E+1 7.8366E+1 2.1658E+1 8.6315E+1 8.6315E+1

10 1.9668E+1 8.6841E+1 8.6841E+1 2.2262E+1 9.5656E+1 9.5656E+1

1� 104 1 1.6034E+1 1.2520E+1 1.2520E+1 1.8264E+1 1.3996E+1 1.3996E+1

2 1.6233E+1 2.4290E+1 2.4290E+1 1.8646E+1 2.7017E+1 2.7017E+1

3 1.7787E+1 3.5733E+1 3.5733E+1 2.0518E+1 3.9719E+1 3.9719E+1

4 1.9385E+1 4.7039E+1 4.7039E+1 2.2421E+1 5.2275E+1 5.2275E+1

5 2.0885E+1 5.8273E+1 5.8273E+1 2.4165E+1 6.4751E+1 6.4751E+1

6 2.2234E+1 6.9462E+1 6.9462E+1 2.5689E+1 7.7180E+1 7.7180E+1

7 2.3412E+1 8.0624E+1 8.0624E+1 2.6979E+1 8.9583E+1 8.9583E+1

8 2.4419E+1 9.1770E+1 9.1770E+1 2.8057E+1 1.0197E+2 1.0197E+2

9 2.5275E+1 1.0291E+2 1.0291E+2 2.8970E+1 1.1435E+2 1.1435E+2

10 2.6013E+1 1.1404E+2 1.1404E+2 2.9776E+1 1.2673E+2 1.2673E+2

6� 104 1 5.7591E+1 4.3266E+1 4.3266E+1 6.6202E+1 4.9523E+1 4.9524E+1

2 5.6217E+1 8.0608E+1 8.0608E+1 6.5756E+1 9.1407E+1 9.1408E+1

3 6.0608E+1 1.1817E+2 1.1817E+2 7.1271E+1 1.3374E+2 1.3375E+2

4 6.5609E+1 1.5557E+2 1.5557E+2 7.7477E+1 1.7595E+2 1.7595E+2

5 7.0510E+1 1.9286E+2 1.9286E+2 8.3500E+1 2.1803E+2 2.1804E+2

6 7.5173E+1 2.3004E+2 2.3004E+2 8.9139E+1 2.6002E+2 2.6002E+2

7 7.9531E+1 2.6716E+2 2.6716E+2 9.4294E+1 3.0192E+2 3.0193E+2

8 8.3536E+1 3.0422E+2 3.0422E+2 9.8910E+1 3.4378E+2 3.4379E+2

9 8.7162E+1 3.4124E+2 3.4124E+2 1.0298E+2 3.8560E+2 3.8561E+2

10 9.0403E+1 3.7823E+2 3.7823E+2 1.0653E+2 4.2739E+2 4.2739E+2

1� 105 1 8.7355E+1 6.5236E+1 6.5236E+1 1.0061E+2 7.4900E+1 7.4902E+1

2 8.4702E+1 1.1966E+2 1.1966E+2 9.9327E+1 1.3611E+2 1.3612E+2

3 9.1058E+1 1.7485E+2 1.7485E+2 1.0736E+2 1.9845E+2 1.9846E+2

4 9.8465E+1 2.2997E+2 2.2997E+2 1.1659E+2 2.6080E+2 2.6081E+2

5 1.0575E+2 2.8499E+2 2.8499E+2 1.2561E+2 3.2305E+2 3.2306E+2

6 1.1272E+2 3.3992E+2 3.3992E+2 1.3411E+2 3.8522E+2 3.8523E+2

7 1.1927E+2 3.9476E+2 3.9476E+2 1.4196E+2 4.4729E+2 4.4731E+2

8 1.2535E+2 4.4954E+2 4.4954E+2 1.4907E+2 5.0931E+2 5.0932E+2

9 1.3091E+2 5.0427E+2 5.0427E+2 1.5541E+2 5.7128E+2 5.7130E+2

10 1.3594E+2 5.5895E+2 5.5895E+2 1.6100E+2 6.3321E+2 6.3321E+2

a Sign-Count Method.
b GITT Approach.
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malization integral, Ni, of the eigenvalue problem
(13), as well as, other related eigenquantities. In this

paper, the sign-count method [11] and the generalized
integral transform technique [10,12] were used to
determine these quantities, which, in turn, are necess-

ary to compute the average temperature and the local
Nusselt number from Eqs. (20), (23) and (27), re-
spectively.

Tables 2 and 3 show the results obtained through
the two approaches cited above, which are in per-
fect agreement. Due to space limitations, only the

®rst ten eigenquantities are listed for various Rey-
nolds and Prandtl numbers and for the two cases
of boundary conditions at the wall tube adopted
here.

Fig. 1 shows the evolution of the local Nusselt
number as a function of the coordinate Z, in the
thermal entry region, for both situations studied

here, i.e., prescribed wall temperature and prescribed
wall heat ¯ux. The Reynolds and Prandtl numbers
considered were, respectively, Rea � 15,100 and Pra �
7:01: The analysis permits the comparison among the
results from the present work and those predicted by
the empirical correlations of Toh and Ghajar [13]

and Yoo et al. [14], which were developed for the
case of uniform wall heat ¯ux and are, respectively,
given by

jh � 0:15

�
z

Dh

�ÿ0:29
Reÿ0:43a , 10 <

z

Dh

< 600 �29�

jh � 0:093

�
z

Dh

�ÿ0:34
Reÿ0:36a , 5 <

z

Dh

< 1100 �30�

and in terms of Nusselt number

Nu � 0:15

�
z

Dh

�ÿ0:29
Re0:57a Pr1=3a ,

10 <
z

Dh

< 600

�31�

Nu � 0:093

�
z

Dh

�ÿ0:34
Re0:64a Pr1=3a ,

5 <
z

Dh

< 1100

�32�

Fig. 2 brings a similar analysis for the case of Rea �
55,700 and Pra � 11:29: The restriction 10 < �z=Dh� <
600 of the empirical correlation proposed by Toh and
Ghajar [13] implies that the results can be compared
over the following ranges of Z:

Rea � 15,100; Pra � 7:01:

2:43� 10ÿ4 < Z < 1:46� 10ÿ2

Rea � 55,700; Pra � 11:29:

4:49�10ÿ5< Z < 2:70�10ÿ3

In this paper, we investigated the Nusselt number

over the range of 3� 10ÿ4 < Z < 1:46� 10ÿ2 for
Rea � 15,100 and Pra � 7:01, and over the range of
1� 10ÿ4 < Z < 2:70� 10ÿ3 for Rea � 55,700 and

Pra � 11:29: From these ®gures reasonable agreements
are observed for the results found from this analysis
and the empirical correlations pointed out above. Bet-

ter results are depicted by comparing the case of pre-
scribed wall heat ¯ux with the empirical correlation by
Toh and Ghajar [13], which predicts results with a
maximum deviation of 17% for the case Rea � 15,100

and Pra � 7:01 and of 14% for Rea � 55,700 and

Fig. 2. Comparison of the local Nusselt number for

Rea � 55,700 and Pra � 11:29:
Fig. 1. Comparison of the local Nusselt number for

Rea � 15,100 and Pra � 7:01:
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Pra � 11:29: A maximum deviation of 38% is encoun-
tered for the case of prescribed wall temperature in re-

lation to the empirical correlation presented by Yoo et
al. [14] for Rea � 15,100 and Pra � 7:01; and a maxi-
mum deviation of 31% for Rea � 55,700 and Pra �
11:29: Higher deviations for the case of prescribed wall

temperature can be justi®ed by the fact that the exper-
iments carried out by the investigators above were per-
formed under constant wall heat ¯ux. It can also be

observed that when the coordinate Z increases the
Nusselt numbers obtained from the present analysis
reach asymptotic values, while the empirical corre-

lations used for comparison can not predict asymptotic
values of Nusselt numbers.
In Figs. 3 and 4 the Nusselt numbers Nu(Z )

obtained from the present calculation, plotted against
Z, are shown along the thermal entry region, for four
di�erent Reynolds numbers (i.e., 6 � 103, 104, 6 � 104,

105) at Pra � 7:3 and 10.3, for the case of prescribed
wall temperature. From these ®gures it can be noticed

that the Nusselt number increases with an increase in
the Reynolds and Prandtl numbers. It is also observed
that the length of the thermal entry region decreases

with increasing Reynolds number, for a ®xed value of
Prandtl number, i.e., the thermally developed region is
reached more rapidly at higher Reynolds numbers.
Figs. 5 and 6 present a similar analysis for the case

of a prescribed wall heat ¯ux. The local Nusselt num-
ber, starting from the thermal entry region, decreases
continuously with axial position until the fully-devel-

oped thermal region is reached. In this region, the
local Nusselt number is represented by an asymptotic
value. It is also noticed that the Nusselt numbers for

the case of prescribed wall heat ¯ux are slightly larger
than those for the case of prescribed wall temperature.

Fig. 3. Local Nusselt number in the thermal entry region for

Pra � 7:3 and di�erent Reynolds numbers for the case of pre-

scribed wall temperature.

Fig. 4. Local Nusselt number in the thermal entry region for

Pra � 10:3 and di�erent Reynolds numbers for the case of

prescribed wall temperature.

Fig. 5. Local Nusselt number in the thermal entry region for

Pra � 7:3 and di�erent Reynolds numbers for the case of pre-

scribed wall heat ¯ux.

Fig. 6. Local Nusselt number in the thermal entry region for

Pra � 10:3 and di�erent Reynolds numbers for the case of

prescribed wall heat ¯ux.
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These observations are the same veri®ed for the case
of prescribed wall temperature.

For the values of Nusselt numbers plotted in Figs.
3±6 within the range of axial positions studied here a
truncation order NR100 in the simulations was

required for full convergence, for all cases.
Finally, Table 4 shows a set of benchmark results

for the asymptotic Nusselt number as a function of the

Reynolds and Prandtl numbers for both cases studied
here; prescribed wall temperature and prescribed wall
heat ¯ux. It can be noticed that a good agreement
exists between these two sets of result. This good

agreement con®rms the evidence that in the fully-devel-
oped thermal region, when we adopt di�erent bound-
ary conditions in turbulent ¯ow, there is not a strong

in¯uence in the results obtained.

4. Conclusions

The problem of turbulent convective heat transfer
along the thermal entry and fully-developed ¯ow
regions of drag-reducing ¯uids with di�erent boundary
conditions at the tube wall has been analyzed, with

excellent computational performance obtained through
the classical integral transform technique. The well-
established Sign-Count Method and GITT approach

were used to calculate the related eigenvalue problems
demonstrating excellent agreement in the results of the
eigenquantities. Benchmark results were tabulated and

graphically presented for di�erent apparent Reynolds
and Prandtl numbers. Results for the local Nusselt
numbers along the thermal entry region were con-
fronted with those from empirical correlations and a

good agreement among them was veri®ed for the case
of prescribed wall heat ¯ux.
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Table 4

Asymptotic Nusselt number calculated from the present

analysis

Rea Pra � 7:3 Pra � 10:3

6000 7.0391a 7.6135b 7.6110a 8.1517b

10,000 9.2915 9.8338 10.162 10.670

60,000 31.608 32.030 35.260 35.653

100,000 46.906 47.296 52.437 52.799

a Prescribed wall temperature.
b Prescribed wall heat ¯ux.
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